Pages

Monday, June 24, 2013

Market Of Metal Oxide TFT Backplanes For Displays 2013-2018

Online Research Reports presents this most up-to-date research on Metal Oxide TFT Backplanes for Displays 2013-2018: Analysis, Trends, Forecasts. The report focuses primarily on quantitative market metrics in order to characterize the growth and evolution of the Metal Oxide TFT Backplanes for Displays Market.
These new drivers will open up new frontiers, both on the technology and the market side. Indeed, they enable displays to both expand their existing markets and to diversify into new spaces. These major drivers that are set to change the display landscape include product differentiation, flexibility, 3D, transparency, system-on-panel, power savings, interconnectivity and screen size, and new front plane 
technologies and more.

Major trends in the industry are changing the backplane functional requirements
Critically, these new trends can only be sustained so long as the underlying technology can deliver the required performance demands. This is critical because the new functional needs will stretch many existing solutions beyond their performance limits, suggesting that alternative solutions will be required. One vital piece of technology that largely sets the limits of display industry is the backplane technology. The backplane is responsible for turning the individual pixels ON and OFF. It is composed of thin film transistors, which act as the switches.

Buy Copy of This Report@ http://www.onlineresearchreports.com/sample/checkout.php?rep_id=169900&type=S

The over-arching trends in the industry are also changing the backplane requirements on several fronts. Product differentiation is resulting in multiplicity of lighting/display technologies, with each demanding a different power output and refresh rate from the backplane. Flexibility is opening up room for a new value chain consisting of new material systems. This is because many existing solutions are failing the flexibility tests, but what is the realistic market opportunity for flexible displays and when?

3D and ultra-high resolution displays mandate higher refresh rates, stretching the switching speed requirements past the capability limits of today's dominant technologies, such as amorphous silicon (aSi) TFTs. System-on-panel thinking is requiring ever more processing power to be integrated onto the panel, and therefore the backplane. Reducing power consumption requires improvements in the entire lifecycle of the display, from reducing the thermal budget during the processing all the way to the more efficient energy use during operation. This will affect how thin film transistors are designed, made and operated.

There is no one size-fits-all-solution
Interestingly, there are already many different backplane technologies that are mature and available, or are fast emerging. These include amorphous silicon, nanocrystalline silicon, low-temperature poly-silicon, solution-processed or evaporated organic semiconductor and various metal oxide thin film transistor technologies. Add to this multiplicity of solutions a range of emerging nano-systems (e.g., various nanowires, graphene, carbon nanotubes) and you will find a decision-making nightmare.

This is because each thin film transistor technology offers a different set of characteristics, suitable for different needs. And yet none offers a one-size-fits-all-solution for all needs. This suggests that, at least initially, many different technologies will co-exist, each rising to satisfy a fragment of the emerging spectrum of needs and thus each occupying a different niche. In addition, some of these options are further advanced than others while others hold great promise. Yet bringing it to market will take time and there are unforeseen technical issues to contend with.

This report makes sense of this changing, fragmented space
This report analyzes major drivers that are shaping the display industry. The major trends examined in detail include product differentiation, size and scaling, power savings, prolonged lifetime, 3D, mechanical flexibility, rimless designs, etc.

The report will then assess how these trends create new functional needs on the technology side. It provides an in-depth review of existing and emerging thin film transistor solutions and critically assesses the pros and cons of each. The technologies covered include various forms of silicon thin film transistors (amorphous, nanostructure and polycrystalline), organic semiconductors, various nanostructured semiconductors and metal oxides.

In terms of metal oxides, it assesses the different material systems available (IGZO, HIZO, IZO, ZNO, TZO, ZnO, etc) and critically assesses the merits of each. In doing so, it outlines and discusses the leading research frontiers in metal oxides science and engineering, including stability and persistent photoconductivity, processing window, p-doping, etc. The report also discusses various requirements of dielectrics for emerging displays and explores the material options for use as dielectrics on wide-bandgap metal-oxide semiconductors.

The report links material properties of all thin film transistor technologies to device figures-of-merit, including mobility, sub-threshold voltage, threshold voltage, stability, contact resistance, etc. These figures-of-merit are then connected to attributes of backplanes and thereby to the emerging functional needs of the display industry as a whole.

Linking the mega trends with micro level technological details, we are able to map out how the fragmented display backplane technology will look going forward.


Contact: sales@researchmoz.com for further information.

No comments:

Post a Comment

 

Sample text

Sample Text

Sample Text